The Effectiveness of Curvature-Based Rewiring and the Role of Hyperparameters in GNNs Revisited

Learning on Graph Conference 2024

Floriano Tori, Vincent Holst & Vincent Ginis

Altering the graph structure is a standard approach **to alleviate** message passing GNNs from **oversquashing**

For this purpose, **discrete graph curvature notions** are used to **detect** and rewire around **bottlenecks**.

For this purpose, **discrete graph curvature notions** are used to **detect** and rewire around **bottlenecks**.

For this purpose, **discrete graph curvature notions** are used to **detect** and rewire around **bottlenecks**.

Oversquashing Theorem [Topping et al. 2022]

Consider a MPNN creating embedding vectors h_i^l at layer l. Suppose we have an edge $i \sim j$ for which $BFc(i,j) < -2 + \delta$. Then we can bound the Jacobian of message passing as

$$\frac{1}{|Q_j|} \sum_{k \in Q_j} \left| \frac{\partial h_k^{(\ell_0+2)}}{\partial h_i^{(\ell_0)}} \right| < C\delta^{\frac{1}{4}}$$

* $(Q_j \subset S_2(i) \text{ satisfying } |Q_j| > \delta^{-1})$

During **Stochastic Discrete Ricci Flow (SDRF)** negatively curved edges are rewired around in order to reduce their curvature

The oversquashing theorem also contains **a condition** in order for **edges** to be **identified as bottlenecks** which is **not checked** during rewiring.

Oversquashing Theorem [Topping et al. 2022]

Consider a MPNN creating embedding vectors h_i^l at layer l. Suppose we have an edge $i \sim j$ for which $BFc(i,j) < -2 + \delta$ and for which the following holds:

$$\delta < \frac{1}{\sqrt{\max\{d_i, d_j\}}} \text{ and } \delta < \frac{1}{\gamma_{max}}$$

Then we can bound the Jacobian of message passing as

$$\frac{1}{|Q_j|} \sum_{k \in Q_j} \left| \frac{\partial h_k^{(\ell_0+2)}}{\partial h_i^{(\ell_0)}} \right| < C\delta^{\frac{1}{4}}$$

The **benchmark datasets** of SDRF **do not contain** enough **edges that satisfy the conditions** of the oversquashing theorem.

Table : Percentage of edges that satisfy condition 2 during SDRF rewiring.

Dataset	Edges rewired	Condition 2 (%)
Texas	89	0(0%)

The **benchmark datasets** of SDRF **do not contain** enough **edges that satisfy the conditions** of the oversquashing theorem.

Table : Percentage of edges that satisfy condition 2(b) during SDRF rewiring.

Dataset	Edges rewired	Condition 2 (%)	Condition 2b (%)
Texas	89	0(0%)	6 (6.7 %)

This is **not a saturation type effect**, as edges that do not satisfy the condition are selected **during the entire rewiring process.**

Table : Percentage of edges that satisfy condition 2(b) during SDRF rewiring.

Dataset	Edges rewired	Condition 2 (%)	Condition 2b (%)
Texas	89	0(0%)	6 (6.7 %)

Fig. :Visual representation of the selected edges during SDRF rewiring that do not satisfy condition 2b. Colour indicates at which % of total rewiring the edge was selected. Dotted line indicates $1/\#_{\Delta}$

This comes from the distributions of **curvature values**, as there are **not** enough edges very close to -2.

Table : Percentage of edges that satisfy condition 2(b) during SDRF rewiring.

Dataset	Edges rewired	Condition 2 (%)	Condition 2b (%)
Texas	89	0(0%)	6 (6.7 %)

Fig. :Visual representation of the selected edges during SDRF rewiring that do not satisfy condition 2b. Colour indicates at which % of total rewiring the edge was selected. Dotted line indicates $1/\#_{\Delta}$

Fig. : Values of curvatures for all edges in the Texas dataset.

The results from this analysis **are similar** over all datasets previously used for **evaluating rewiring methods**.

Dataset	Edges rewired	Condition 2 (%)	Condition 2b (%)
Texas	89	0(0%)	6 (6.7 %)
Cornell	126	0(0%)	15 (11.90 %)
Wisconsin	136	0(0%)	11 (8.09 %)
Chameleon	2441	4 (0.16 %)	141 (5.78 %)
Actor	1000	11(1.1%)	237 (23.70 %)
Squirrel	787	0(0%)	34 (4.32 %)
Cora	100	0(0%)	68 (68.0 %)
Citeseer	84	0(0%)	24 (28.57 %)
Pubmed	166	25 (16.06 %)	116 (69.88 %)
MUTAG	3497	0(0%)	1128 (35.16 %)
PROTEINS	50936	0(0%)	5944 (11.67 %)

Table : Percentage of edges that satisfy condition 2(b) for all datasets during SDRF rewiring.

The results from this analysis **are similar** over all datasets previously used for **evaluating rewiring methods**.

The results from this analysis **are similar** over all datasets previously used for **evaluating rewiring methods**.

At this point we face **a contradiction** with reported accuracies **in previous works.**

To **analyse the performance** differences, we performed **hyperparameter sweeps** for different curvature definitions.

Jürgen Jost and Shiping Liu. Ollivier's ricci curvature, local clustering and curvature-dimension inequalities on graphs. Discrete & Computational Geometry, 51(2):300-322, 2014 Fesser, Lukas, and Melanie Weber. "Mitigating over-smoothing and over-squashing using augmentations of Forman-Ricci curvature." Learning on Graphs Conference. PMLR, 2024 To **analyse the performance** differences, we performed **hyperparameter sweeps** for different curvature definitions.

Table : Average mean test accuracy of thetop 10% hyperparameter configurations

	Texas	
BFc	59.26 <u>+</u> 0.00	
BFc ₃	59.26 <u>+</u> 0.00	
BFc_{mod}	59.26 <u>+</u> 0.00	
JLc	59.26 <u>+</u> 0.00	
AFc_3	59.58 <u>+</u> 0.52	
AFc_4	59.79 <u>+</u> 0.54	
None	59.95 <u>+</u> 1.15	

Table : Top mean test accuracy results

BFcBFc3BFc $_{mod}$ JLcAFc3AFc4NoneTexas59.2659.3059.2659.2663.6362.0763.48

The hyperparameter sweeps for the **different datasets** also show that **performances** after rewiring are **not systematic improvements**.

Takeaways & Future work

Dataset	Edges rewired	Condition 2 (%)
Texas	89	0(0%)

Takeaways & Future work

Dataset	Edges rewired	Condition 2 (%)
Texas	89	0(0%)

Takeaways & Future work

Dataset	Edges rewired	Condition 2 (%)
Texas	89	0(0%)

Published in Transactions on Machine Learning Research (05/2024)		Published as a conference paper at ICLR 2023
	Leave Graphs Alone: Addressing Over-Squashing without	

Rewiring

Where Did the Gap Go? **Reassessing the Long-Range Graph Benchmark**

A CRITICAL LOOK AT THE EVALUATION OF GNNS UNDER HETEROPHILY: ARE WE REALLY MAKING PROGRESS?

Tönshoff, Jan, et al. "Where Did the Gap Go? Reassessing the Long-Range Graph Benchmark." Transactions on Machine Learning Research Tortorella, Domenico, and Alessio Micheli. "Leave Graphs Alone: Addressing Over-Squashing without Rewiring." The First Learning on Graphs Conference. Platonov, Oleg, et al. "A critical look at the evaluation of GNNs under heterophily: Are we really making progress?." The 11th International Conference on Learning Representations.

The Effectiveness of Curvature-Based Rewiring and the Role of Hyperparameters in GNNs Revisited

Floriano Tori Data Analytics Laboratory Vrije Universiteit Brussel Floriano.Tori@vub.be Vincent Holst Data Analytics Laboratory Vrije Universiteit Brussel Vincent.Thorge.Holst@vub.be Vincent Ginis Data Analytics Laboratory Vrije Universiteit Brussel SEAS, Harvard University Vincent.Ginis@vub.be

O https://github.com/FloTori/Revisiting-Graph-Rewiring

Come visit at Poster Session 2!

