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Towards sustainable power systems: improving
battery degradation forecasts with enhanced
multi-~task learning
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Towards sustainable power systems
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Further enhancing the use of electric vehicles and renewable
energy sources is key to assuring a fossil-free future.
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Towards sustainable power systems
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To do so, one needs highly efficient energy systems: long-living
batteries with high energy density

Emilie Grégoire, Xia Zeng, Sam Verboven, Maitane Berecibar
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Problem Formulation

However, to use the full potential of
Lithium-ion batteries one should still:
Extend the lifetime

- Reduce safety risks

- Reduce the maintenance costs

- Further improve overall efficiency
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Problem Formulation

A key challenge to addressing the points is the
accurate forecasting of battery degradation:

When will the battery become unusable/unsafe?

Emilie Grégoire, Xia Zeng, Sam Verboven, Maitane Berecibar
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Proposed solution



Proposed solution: data




Proposed solution: data

Battery Degradation
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Proposed solution: data

Capacity and Resistance Sequence Properties
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Proposed solution: multi~-task model

Sequence-to- Encoder (A)
sequence model that

forecasts capacity and l !
resistance trajectories Decoder  Decoder
simultaneously (B) (C)
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Proposed solution: multi~-task model

Padding Sequences
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Proposed solution: multi~-task model

LSTM Encoder
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Proposed solution: multi~-task model
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Our contribution: optimizing task weighting
techniques
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Our contribution: optimizing task weighting
techniques

Task Weight Grid
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Our contribution: optimizing task weighting

techniques
Task Weighting
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2) Dynamic
weighting:

- From Multi-Task
learning it is
known that task
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First results: static weighting

Multi-Stage Training

Three-stage One-stage
A. B.
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First results: dynamic weighting
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