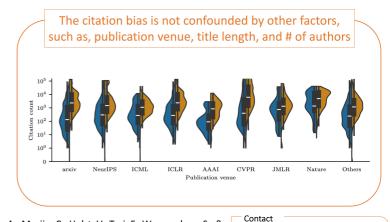

Large Language Models Reflect Human Citation Patterns with a Heightened Citation Bias

Andres Algaba¹, Carmen Mazijn¹, Vincent Holst¹, Floriano Tori¹, Sylvia Wenmackers², Vincent Ginis^{1,3}

¹ Vrije Universiteit Brussel; ² KU Leuven; ³ Harvard University


GPT-4 was tasked with suggesting scholarly references for anonymized in-text citations Prompt LLM Generated References AAAI, NeurIPS, ICLR, ICML 03/2022 - 10/2023 Below, we share with you a written introduction to a paper and have omitted the references. Convolutional Neural Networks (CNNs) have dominated in Computer Vision (CV) field as the backbone for various tasks like classification [1.2.3.4.5.6.7], object detection [8.9.10] and segmentation [11.12.13]. These years have witnessed the rapid growth of another promising alternative architecture paradigm, Vision Transformers (VTIs). They have already exhibited great performance in common tasks, such as [1] Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Numbers between square brackets indicate citations. Can you give us a suggestion for an explicit Networks. Neural Information Processing Systems. [2] He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep ■ Non-isolated **Ground Truth References** [1] He, K., X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In Proceedings of the IEEE conference or computer vision and pattern recognition. 2016. Title length, Number of authors [2] Huang, G., Z. Liu, L. Van Der Maaten, et al. Densely connected convolutional networks. In Proceedings of the ■ Intro refs Publication year, Number of authors conference on computer pages 4700–4708. 2017. Publication venue References count

Results are robust across multiple runs and iterations improve existence rates

Vanilla (Iterative)	Run 1	Run 2	Run 3	Run 4	Run 5
Existence	64.3 (87.0)	63.3 (85.5)	62.8 (88.0)	64.2 (86.8)	67.6 (86.3)
Cited in paper	17.5 (20.0)	17.1 (20.1)	15.7 (18.4)	16.8 (19.2)	18.0 (20.8)
Cited in introduction	13.4 (14.5)	13.2 (15.0)	12.2 (13.5)	12.9 (14.3)	13.9 (15.3)
Pairwise Match (PM) for all references	7.0 (7.1)	7.2 (7.3)	6.3 (6.6)	6.9 (7.0)	6.7 (7.1)
PM for uniquely identifiable references	12.5 (12.5)	13.7 (14.1)	12.5 (12.9)	13.7 (13.7)	13.3 (14.0)

Algaba, A., Mazijn, C., Holst, V., Tori, F., Wenmackers, S., & Ginis, V. (2024). Large Language Models Reflect Human Citation Patterns with a Heightened Citation Bias. arXiv preprint arXiv:2405.15739.

andres.algaba@vub.be