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CONTEXT * LLMs in Scientific Research: Assist in literature synthesis but may influence citation practices.
O « Key Concern: Ensuring integrity in scientific communication and investigating systemic biases.
 Human-Al Co-evolution: Al-generated insights influence researchers, shaping future LLM training.
« Beyond Citation Bias: Investigate if LLMs internalize citation structures meaningfully.
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ImageNet Classification with Deep Convolutional Neural
Networks. Neural Information Processing Systems.
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Convolutional Neural Networks (CNNs) have dominated in
Computer Vision (CV) field as the backbone for various tasks
like classification [1,2,3,4,5,6,7], object detection [8,9,10] and
segmentation [11,12,13]. These years have witnessed the
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» LLM Citation Generation:
» Suggested scholarly references for anonymized in-text citations.

(GPT-4, GPT-40, and Claude 3.5)

 Existence check via Semantic Scholar.
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References count
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= Dataset:
« 166 papers from cs.LG. (AAAI, NeurlPS, ICML, ICLR)

« Papers first appeared online after GPT-4’s cut-off. (March 2022 — Oct 2023)

- Extracted main content separately from ground truth references.
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GPT-4 citations appearing later in the paper — Yellow

GPT-4 citations linked to ground truth — Orange

B Paper
O H In intro - GPT-4 citations linked to other generated references — Orange
o O In paper - Completely isolated GPT-4 citations — Purple
B Non-isolated
O Isolated * Ground-truth references not cited by GPT-4 — Grey
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» Dataset: 166 papers, each represented as a citation network graph.
» Graph Construction: Two distinct graphs per paper. (GPT-generated vs. ground truth)
= Graph Count: 332 graphs. (166 GPT-generated + 166 ground-truth)

= Connectivity Check:

« Edges were added to ensure all references are linked to the focal paper.
= Graph Simplification:

« Converted all graphs to undirected format.

= Size Balancing:

« Randomly removed references from ground-truth graphs. (For a fair comparison)

= Random baseline

Ground-truth « References reshuffled from papers in the same field

/N LLM-generated references

Ground-truth references

RESULTS = Random Forest Classifier

performance description:
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» Structural Similarity:
LLM citations closely match human citation networks.

» Cosine Similarity Analysis:

= Random Baseline:

1.0

0.7

0.8
Minimum

0.8
Maximum

LLM citations align closer to human references than random ones.

Shows significant deviation from human and LLM citation structures.

Graph properties

Mean accuracy

Mean F1-score

Ground-truth vs. GPT

Ground-truth vs. Random

GPT vs. Random

0.5167 +£0.0224

0.9271 +0.0264

0.9021 £ 0.0182

0.5209 £ 0.0387

0.9265 £ 0.0302

0.9066 £ 0.0168

Title embeddings

Mean accuracy

Mean F1-score

Ground-truth vs. GPT

Ground-truth vs. Random

GPT vs. Random

0.6000 + 0.0482

0.8688 +0.0214

0.7396 £ 0.0132

0.5998 + 0.0653

0.8720 +0.0187

0.7471 +0.0166

Mean accuracy and F1-score from
five independent runs.

» Features Used:
Graph-based properties &
title embeddings.

- Dataset Spilit:
Training (70%) / Testing (30%)
Using K-fold cross-validation.

Random Forest
Classifier Results:

 LLM-generated citations and
human references:
Structurally and semantically
align closely.

e LLMvs. Random and
Ground Truth vs. Random:
Highly distinguishable.

LLMs internalize citation behavior, but risk amplifying citation bias.




